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Topographical scattering of gravity waves
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A systematic hierarchy of partial differential equations for linear gravity waves in water
of variable depth is developed through the expansion of the average Lagrangian in
powers of r¡hr (h¯depth, ¡h¯ slope). The first and second members of this
hierarchy, the Helmholtz and conventional mild-slope equations, are second order.
The third member is fourth order but may be approximated by Chamberlain & Porter’s
(1995) ‘modified mild-slope’ equation, which is second order and comprises terms in
~#h and (~h)# that are absent from the mild-slope equation. Approximate solutions of
the mild-slope and modified mild-slope equations for topographical scattering are
determined through an iterative sequence, starting from a geometrical-optics
approximation (which neglects reflection), then a quasi-geometrical-optics approxi-
mation, and on to higher-order results. The resulting reflection coefficient for a ramp
of uniform slope is compared with the results of numerical integrations of each of the
mild-slope equation (Booij 1983), the modified mild-slope equation (Porter & Staziker
1995), and the full linear equations (Booij 1983). Also considered is a sequence of
sinusoidal sandbars, for which Bragg resonance may yield rather strong reflection and
for which the modified mild-slope approximation is in close agreement with Mei’s
(1985) asymptotic approximation.

1. Introduction

Linear gravity waves of velocity potential φ, free-surface displacement ζ (projected
on z¯ 0), and frequency ω in water of ambient depth h(x) are described by

[φ(x, z, t), ζ(x, t)]¯Re²[Φ(x, z), i(ω}g)Φ(x, 0)] e−iωt´, (1.1)

where the complex potential Φ satisfies

~#ΦΦ
zz

¯ 0 (®h! z! 0), (1.2)

Φ
z
¯ κΦ (z¯ 0), κ3ω#}g, (1.3a, b)

Φ
z
¡h[¡Φ¯ 0 (z¯®h), (1.4)

x3 (x, y), ¡3 (¥
x
, ¥

y
), ~#3 ¥#

x
¥#

y
. (1.5a–c)

Appropriate lateral boundary conditions are implicit.

1.1. The classical problem

If the variation in depth is neglected (1.2)–(1.4) admit the solution

Φ(x, z)¯Φ
!
(x) (cosh kzκk−" sinhkz), (1.6)
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where k is determined by the dispersion relation

k tanhkh¯ κ, (1.7)

and Φ
!
(x)3Φ(x, 0) satisfies the Helmholtz equation

(~#k#)Φ
!
¯ 0 (k¯ constant). (1.8)

1.2. The mild-slope equation

If k¯k(x) is determined by (1.7) with h¯ h(x) therein and the z-dependence of Φ is
approximated by (1.6) in an appropriate averaging procedure (see Smith & Sprinks
1975 or Mei 1983, §3.5) Φ

!
(x) is found to satisfy the ‘mild-slope equation’

¡[(H¡Φ
!
)k#HΦ

!
¯ 0, (1.9)

where kH¯ "

#
[Tkh(1®T #)] (T3 tanhkh) (1.10)

is a dimensionless group velocity that approximates khE (κh)"/# for khi 1, has a
maximum of "

#
kh at kh¯ 1±200 (κh¯ 1), and then decreases to "

#
as kh W¢. The mild-

slope equation reduces to the conventional shallow-water equation in the limit κh X 0
(HU h,k#HU κ) and to the Helmholtz equation (1.8) in the limit κh W¢ (after division
by HC "

#
κ).

We remark that (1.9) implies

(~#k#)Φ
!
¯®H−"¡H[¡Φ

!
¯O(εk#Φ

!
), (1.11)

where ε3σ}kh, σ3 r¡hr, (1.12a, b)

so that the error implicit in the neglect of the variation of depth in (1.8) is O(ε). It
follows from the analysis of Smith & Sprinks (1975) that the error in the
accommodation of variable depth in the mild-slope equation (1.9) is O(ε#), which is
O(σ#) for kh¯O(1) but appears to diverge in the shallow-water limit kh X 0; however,
it then is more appropriate to introduce F3 h}σ to obtain ε¯ 1}kF. See Mei (1983,
§§3.5 and 4.1.1) for further discussion.

1.3. The modified mild-slope equation

Chamberlain & Porter (1995), starting from a variational integral that is equivalent to
an average Lagrangian (see §2.2) based on the trial function (1.6), derive the ‘modified
mild-slope equation’

¡[(H¡Φ
!
)(k#H®K )Φ

!
¯ 0, (1.13)

where K¯K
"
(kh)~#hkK

#
(kh) (¡h)#, (1.14a)

K
"
¯ "

%
(1®T #) 9kh(1T #)®T

kh(1®T #)T: (T3 tanhkh), (1.14b)

and

K
#
¯®(1®T #) [kh(1®T #)T ]−$ ²"

%
(1®2T #3T %) [(kh)# (1®T #)2khT ]

"

'
(kh)% (1®T #)$#

$
(kh)$T(1®T #)#®$

%
T #(1T #)´ (1.14c)

(H3 u
!
, K3®r, K

"
3®u

"
and kK

#
3®u

#
in Chamberlain & Porter’s notation). The

error in the trial function (1.6) is O(ε), which, if ¡h is continuous, implies an O(ε#) error
in (1.13) by virtue of the variational principle. It therefore appears that the retention
of K, which is O(ε#), is inconsistent with (1.6) ; however, Chamberlain & Porter (1995)
and Porter & Straziker (1995) offer examples that strongly support this retention.
Moreover, if ¡h is discontinuous the term K

"
~#h implies an O(ε) effect, and it follows
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from the integration of (1.13) across such a discontinuity that (the complex amplitude
of) the velocity must satisfy the jump condition (Porter & Staziker 1995)

H[¡Φ
!
]¯K

"
[¡h]Φ

!
, (1.15)

where [ f(x)]3 f(x)®f(x®). (1.16)

But note that the solution of the mild-slope equation (1.9) must satisfy [¡Φ
!
]¯ 0 at a

discontinuity in ¡h.
1.4. The mild-slope hierarchy

We consider in §2 the expansion of the average Lagrangian in powers of σ to construct
a systematic hierarchy of partial differential equations for Φ

!
, in which (1.8) and (1.9)

are the first and second members. The next member is of fourth order but may be
reduced to the modified mild-slope equation (1.13) through an approximation that is
implicit in Chamberlain & Porter and explicit in the present development.

In §3, we consider extensions of the geometrical-optics approximation (Keller 1958)
at levels equivalent to those of the above hierarchy and transform the governing
differential equation to a Volterra integral equation. In §4, we apply the development
of §3 to the topographical reflection of a straight-crested wave by a finite interval of
variable depth on the assumption that h(x), but not necessarily dh}dx, is continuous
and obtain first- and second-order (in σ) analytical approximations to the reflection
coefficient through an iterative solution of the integral equation. We also construct a
variational form for the reflection coefficient, which is stationary with respect to first-
order variations about the solution of the integral equation, and an ad hoc
approximation based on an interpolation of the wave amplitude over the interval of
variable depth.

We compare these approximations with those obtained through the numerical
solution of the Volterra integral equation and with results given by others. Two test
problems are considered: a linear ramp and a finite patch of sinusoidal sandbars.†
Both problems have been discussed elsewhere, and data for comparison are readily
available.

2. The average Lagrangian

The specific Lagrangian for the gravity wave described by (1.1)–(1.5) is given by

L¯
1

2&& 9&!

−h

(¡φ)#dz®gζ#:dxdy. (2.1)

Substituting φ and ζ from (1.1), averaging L over the period 2π}ω, and invoking
κ3ω#}g, we obtain the average Lagrangian

L{ 3
ω

2π&#
π/ω

!

Ldt¯
1

4&&,dxdy, (2.2)

where ,¯&!

−h

[r¡Φr#rΦ
z
r#] dz®κrΦ

!
r#. (2.3)

2.1. Operational expansion

We pose the solution of (1.2) and (1.3a) in the form (Miles 1985)

Φ(x, z)¯ coshEzκE−" sinhEz)Φ
!
(x)3&(E#, z)Φ

!
(x), E#3®~#, (2.4a, b)

† Such a patch is sometimes called a ripple bed, but, as Professor Mei has reminded us, ‘ ripple ’
is appropriate for such a patch only if its wavelength is small compared with that of the incident wave,
whereas the two wavelengths are commensurable in the present context.
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where the operators coshEz and E−" sinhEz are defined by their power-series
expansions in E # (note that (2.4a) reduces to (1.6) for E¯k), and expand the operator
& in powers of the Helmholtz operator

(3~#k#¯®(E #®k#), (2.5)

where k¯k(x) is determined by (1.7). Introducing the truncated expansion

Φ(x, z)¯²&(k#, z)®(¥&}¥E #)E=k
(O(( #)´Φ

!
(x), (2.6)

invoking (Φ
!
¯®H−"(¡H[¡Φ

!
)O(σ#Φ

!
), (2.7)

where H is given by (1.10), and evaluating & and ¥&}¥E # through (2.4), we obtain

Φ(x, z)¯ [F(h, z)G(h, z) (¡h[¡)O(σ#)]Φ
!
(x), (2.8)

where F¯
coshk(zh)

coshkh
, G¯

1

2 9kz sinhk(zh)®sinhkh sinhkz

k# coshkh :dH}dh

H
. (2.9a, b)

2.2. Truncated Lagrangian

We now adopt (2.8) as a trial function in (2.3) and introduce the abbreviations

©( )ª3&!

−h

( ) dz and Ψ3¡h[¡Φ
!

(2.10a, b)

to obtain
,¯®κrΦ

!
r#©r¡(FΦ

!
GΨ )r#rF

z
Φ

!
G

z
Ψ r#ª. (2.11)

Invoking r( )r#3 ( ) ( )*, where ( )* is the complex conjugate of ( ),

¡F¯F
h
¡h, ©F #ª¯H, ©F#

z
ª¯ κ®k#H and ©F

z
G

z
ª¯®k#©FGª,

(2.12a–d )

where H is given by (1.10), transforming the terms in Φ$

!
(¡h[¡Ψ ) and Ψ*(¡h[¡Ψ )

through Green’s theorem and terms like Φ$

!
¡Φ

!
through integration by parts, and

discarding a pure divergence (which makes no contribution to the variation δL{ ), we
obtain

,¯,
ms

KrΦ
!
r#MrΨ r#©FGª (¡Φ$

!
[¡Ψ¡Φ

!
[¡Ψ*)©G#ªr~Ψ r#, (2.13)

where ,
ms

¯H(r¡Φ
!
r#®k#rΦ

!
r#) (2.14)

is the mild-slope approximation to ,,

K¯©F#
h
ª (¡h)#®¡[²[©FF

h
®k#FGF

h
G

h
(¡h)#ª®¡[(©F

h
Gª h«)]¡h´ (2.15a)

and M¯©G#
z
ª2©FG

h
®F

h
Gª©G#

h
ª (¡h)#®¡[(©GG

h
ª¡h). (2.15b)

The retention of all terms in (2.13) leads to a fourth-order partial differential
equation. Chamberlain & Porter’s modified mild-slope approximation follows from
the neglect of all terms of G, which reduces K to (1.14) and (2.13) to

,¯,
ms

K rΦ
!
r#¯Hr¡Φ

!
r#®(k#H®K ) rΦ

!
r#. (2.16)

3. Quasi-geometrical-optics approximation

The geometrical-optics approximation

Φ
!
¯A(kH )−"/# eiθ, (¡θ)#¯k#(x), (3.1a, b)
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to the solution of the mild-slope equation (1.9), where A is a constant and kH is the
dimensionless group velocity (1.10), suggests the transformation

Φ
!
(x)¯ (kH )−"/#E(θ). (3.2)

We relegate further discussion of two-dimensional waves to the Appendix and, here
and in §4, assume h¯ h(x) and replace ¡( ) by ( )« and (2.2) by

L{ ¯
1

4&,= dθ, ,= 3k−",, θ(x)¯&x

!

k(ξ ) dξ. (3.3a–c)

Substituting (3.2) into (2.13) and integrating the term in ¥rE r#}¥θ by parts, we obtain

,= ¯,=
ms

(k#H )−"KrE r#PrEθr#k#H−"©G#ª h«#rEθθr#O(σ$), (3.4)

where ,=
ms

¯ rEθr#®(1®Q
ms

) rE r# (3.5)

is the mild-slope approximation to ,= ,

Q
ms

¯k−"(Γh«)«(Γh«)#, Γ¯ "

#
(k#H )−" (dkH}dh)¯ "

%
(kH )−#T(1®T #) (1®khT ),

(3.6a, b)

K¯©F#
h
ª h«#®(©FF

h
®k#FGª h«)«, (3.7)

P¯H−"[©FGª h§®©FGª
h
h«#©2FG

h
®2F

h
GG#

z
ª h«#]O[(h«#)§], (3.8)

and F and G are given by (2.9). Anticipating (3.11), which implies Eθθ ¯®E [1O(σ)],
we reduce (3.4) to

,= ¯ (1P) rEθr#®(1®Q) rE r#O(σ$), (3.9)

where Q¯Q
ms

(k#H )−" (Kk%©G#ª h«#), (3.10)

and, here and subsequently, we regard P and Q as functions of θ. Hamilton’s principle,
δ,= }δE¯ 0, then implies

EθθE¯QE®(PEθ)θ. (3.11)

Following Liouville (Erde! lyi 1956, §4.1) we transform (3.11) to

E(θ)¯A
+
eiθA

−
e−iθ&θ

!

[Q(θ# )E(θ# ) sin (θ®θ# )®P(θ# )E «(θ# ) cos (θ®θ# )] dθ# , (3.12)

wherein A
+

and A
−

are complex amplitudes, and h¯ h
!
¯ constant for x! 0. It is

convenient to write the solution of (3.12) as E(θ)¯A
+
E

+
(θ)A

−
E$

+
(θ) where

E
+
(θ)¯ eiθ&θ

!

[Q(θ# )E
+
(θ# ) sin (θ®θ# )®P(θ# )E!

+
(θ# ) cos (θ®θ# )] dθ# . (3.13)

Equation (3.13) may be solved by iteration starting from the function eiθ. The next
approximation admits the form

E
+
(θ)¯ eiθ"

#
i&θ

!

²[Q(θ# )®P(θ# )] e#iθ#−iθ®[Q(θ# )P(θ# )] eiθ´dθ#O(Q#). (3.14)

We refer to the first two terms on the right-hand side of (3.14) as the quasi-geometrical
optics approximation to E

+
. The iteration used here is discussed further in §4.1.

We recover : (i) the geometrical-optics approximation by neglecting P and Q ; (ii) the
quasi-geometrical-optics reduction of the mild-slope approximation by neglecting P
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F 1. The functions (a) Q
"

and (b) Q
#

plotted against kh. The mild-slope and modified mild-
slope approximations to Q

"
and Q

#
are shown as dotted and broken lines respectively.

and approximating Q by Q
ms

(3.6) ; (iii) the quasi-geometrical-optics reduction of the
modified mild-slope approximation by neglecting all terms in G, which implies the
neglect of P and the approximation of K by (1.14) in (3.10) and yields

Q¯Q
ms

(k#H )−"K3k−"Q
"
h§Q

#
h«#, (3.15a)

where Q
"
¯Γ(kH )−"K

"
¯

1

2

(1®T #)

kh(1®T #)T
¯

1

2

d

dh 01k1 (3.15b)

and

Q
#
¯Γ #k−"Γ

h
(kH )−"K

#

¯®"

#
(1®T #)# (2kH )−% [#

$
(kh)% (1®T #)#)

$
(kh)$T(1®T #)

(kh)#(1T #)#®2khT $T #]. (3.15c)

Letting khU (κh)"/#U 0, we obtain the shallow-water limit

QUQ
ms

U "

%
κ−"(h§®"

%
h−"h«#). (3.16)

Figure 1 shows the effect of approximating Q
"
and Q

#
in both of the ways described

above. In figure 1(a) Q
"

is plotted against kh as a solid line ; the mild-slope
approximation to Q

"
, found from (3.6), and the modified mild-slope approximation to

Q
"

(3.15b) are given as dotted and broken lines respectively. Figure 1(b) is as figure
1(a), but for Q

#
rather than Q

"
. It is clear that Q

"
and Q

#
are qualitatively similar to

their approximations; further evidence in support of these approximations is given in
§§5 and 6.

4. Topographic reflection

We apply the results of §3 to the reflection of a straight-crested wave on the
assumptions that : P is negligible ; h is constant in x! 0 and x" F ; h(x) and h«(x) are
continuous in 0!x! F, but h«(x) may be discontinuous at x¯ 0 and F. Positing

E(θ)¯ eiθR e−iθ, θ¯k
!
x (x! 0) (4.1)
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for an incident wave of normalized complex amplitude3 1 and setting A
+
¯ 1,

A
−
¯R and P¯ 0, we reduce (3.12) to

E(θ)¯ eiθR e−iθ&θ

!−

Q(θ# )E(θ# ) sin (θ®θ# ) dθ# , (4.2)

in which the lower limit of 0® allows for a possible discontinuity in h«. The radiation
condition that the left-moving wave be absent in x" F implies (here and except in §4.1
the limits 0 and θ

"
are implicitly 0® and θ

"
)

R¯®"

#
i&θ

"

!

Q(θ)E(θ) eiθ dθ, θ
"
3 θ(F ), (4.3a, b)

which permits the reduction of (4.2) to

E(θ)¯ eiθ®"

#
i&θ

"

!

Q(θ# )E(θ# ) exp (irθ®θ# r) dθ# . (4.4)

Either (4.2), subject to the constraint (4.3), or (4.4) may be solved by iteration,
starting from the first approximation E¯ eiθ. The corresponding first (quasi-
geometrical-optics) and second approximations to R are

R
"
¯®"

#
i&θ

"

!

Q(θ) e#iθ dθ (4.5)

and R
#
¯R

"
®

1

4&θ
"

!

&θ
"

!

Q(θ)Q(θ# ) exp [2imax (θ, θ# )] dθdθ# (4.6a)

¯R
"
®

1

4&θ
"

!

Q(θ) e#iθ dθ&θ

!

Q(θ# ) dθ#®
1

4&θ
"

!

Q(θ) dθ&θ
"

θ

Q(θ# ) e#iθ# dθ# (4.6b)

¯R
"
®

1

2&θ
"

!

Q(θ) e#iθ dθ&θ

!

Q(θ# ) dθ# , (4.6c)

where (4.6c) follows from (4.6b) through the interchange of θ and θ# in the second
double integral in (4.6b) or, equivalently, from the symmetry of the double integrand
in (4.6a) with respect to the diagonal θ# ¯ θ.

4.1. Neumann-series solution

Under our present assumption that P may be neglected (3.13) can be written as the
Volterra integral equation

E
+
(θ)¯ eiθ&θ

!+

Q(θ# ) sin (θ®θ# )E
+
(θ# ) dθ# , (4.7a)

which may be solved using a Neumann series. (Here the lower integration limit is 0 ;
contributions due to possible discontinuities in h« are dealt with in (4.8) below.) Let
E(!)

+
(θ)¯ eiθ, the free term in (4.7), so that the partial sums of the Neumann series for

E
+

are E(n)
+

, where

E(n)
+

(θ)¯ eiθ&θ

!

Q(θ# ) sin (θ®θ# )E(n−")
+

(θ# ) dθ# , n¯ 1, 2, 3,… . (4.7b)

(The convergence of E(n)
+

to the solution E
+

as nU¢ is guaranteed when Q is bounded
(see Porter & Stirling 1990, p. 81 et seq.). The function Q is unbounded only when
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kh X 0 (see figure 1), a limit which is precluded in the present analysis.) In practice we
find that the convergence is rapid and that E(n)

+
is a good approximation to E

+
, even

for small values of n.
We now use (4.1) and the fact that there are only right-moving waves in x" F to

deduce that
Eθ(0)[i®Q

"!
h«(0)]E(0)¯ 2i,

Eθ(θ
"
®)®[iQ

""
h«(F®)]E(θ

"
)¯ 0,

5

6

7

8

(4.8)

in which Q
"!

3Q
"
(θ

!
) and Q

""
3Q

"
(θ

"
). (The terms involving Q

"!
and Q

""
are required

to take account of the assumed discontinuities in h«.) Now E¯A
+
E

+
A

−
E$

+
, and

therefore (4.8) form a pair of equations for A³ in terms of point values of E
+

and E
+θ.

It follows that E(n)
+

gives rise to A(n)
³ approximating A³. This, in turn, leads to the

approximation

R
n
¯A(n)

+
E(n)

+
(0)A(n)

−
E(n)$

+
(0)®1¯A(n)

+
A(n)

−
®1. (4.9)

It is readily seen that if n¯ 1 in (4.9) we obtain the approximation (4.5), and
n¯ 2 gives (4.6a, b, c). The approach described here makes clear how subsequent
approximations can be derived and also provides a framework in which convergence
of the iteration is guaranteed.

4.2. Variational formulation

Multiplying (4.4) by kQE, integrating over (0®, F), and dividing the result by the
square of (4.3), we obtain

1

R
¯

2i&QE #dθ®&& (QE ) (Q= E= ) exp (irθ®θ# r) dθ# dθ

0&QE eiθ dθ1# , (4.10)

in which the limits of integration are 0® and θ
"
, and the double integrand is

symmetric in θ and θ# . This quadratic form is stationary with respect to first-order
variations about the solution of (4.4) and invariant under a scale change of E. For
example, the trial function E¯ eiθ yields the variational approximation

1

R
v

¯
1

R
"


R

"
®R

#

R#

"

(4.11a)

¯
1

R
#

91®0R"
®R

#

R
"

1#: , (4.11b)

where R
"
and R

"
®R

#
are given by (4.5) and (4.6). The error in (4.11), which is second

order in the error in the trial function, is of the same order as that in R
#
, but the

variational approximation appears to be superior to the second-order approximation
(4.6) if rRr is not small ; see e.g. §6.

The variational form (4.10) could be used to construct systematic approximations to
R through an appropriate expansion of E ; however, this procedure does not appear to
offer any advantage over that of §4.1.

4.3. Interpolation of E

We obtain a collocation approximation through the interpolation

E¯
E

!
sin (θ

"
®θ)E

"
sin θ

sin θ
"

(sin θ
"
1 0), (4.12)
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wherein the subscript 0}1 implies evaluation at x¯ 0}F. Substituting (4.12) into (4.4)
and setting x¯ 0 and x¯ F, we obtain a pair of linear algebraic equations in E

!
and

E
"
, the solution of which yields

DE
!
¯ s

"
"

#
e
"
(2I®J®J{ ), DE

"
¯ e

"
s
"
"

#
[(1e#

"
) I®J®J{e#

"
], (4.13a, b)

where D¯ s
"
Ie

"
®"

#
(Jea

"
J{e

"
)"

#
ie

"
(I #®rJ r#), (4.14)

e
"
3 eiθ", s

"
3 sin θ

"
, (4.15a, b)

I¯
1

2&Qdθ, J¯
1

2&Q e#iθ dθ¯ iR
"
, (4.16a, b)

and ( - ) is the complex conjugate of ( ). Invoking (4.1) at x¯ 0, we obtain

R
E

¯E
!
®1¯®iD−"[Js

"
"

#
e
"
(I #®rJ r#)] (4.17)

for the corresponding approximation to the reflection coefficient. This approximation
appears to be as good as either (4.6) or (4.11) if sin θ

"
is not too small and avoids

the double integral in (4.6). However, although the indeterminacy associated with
sin θ

"
¯ 0 can be resolved, the approximation is poor for rsin θ

"
ri 1.

5. Booij’s ramp

As a first example, we consider the linear ramp described by

h¯

1

2

3

4

h
!

(x% 0)

h
!
®σx (0%x% F ), σ3

h
!
®h

"

F
,

h
"

(x& F )

(5.1a, b)

for which (3.15a) and (4.13a, b) may be reduced to

Q¯σk−"[®Q
"!

δ(x)Q
""

δ( F®x)]σ#Q
#
(x), (5.2)

I¯ "

#
σ(Q

""
®Q

"!
)σ#I

#
, J¯ "

#
σ(Q

""
e#
"
®Q

"!
)σ#J

#
, (5.3a, b)

where [I
#
, J

#
]¯

1

2&Q
#
[1, ε#iθ] dθ. (5.4)

The phase integral may be placed in the form

θ¯&x

!

kdx¯
1

σ&k!h!

kh

01
2k#

sinh 2k# 1dk# 3
Θ(kh)

σ
, (5.5)

the substitution of which into (5.4) yields

[I
#
, J

#
]¯

1

2σ&k!h!

k"h"

Q
#
(k# ) 01

2k#

sinh 2k# 1 [1, e#iθ] dk# . (5.6)

J
#
¯O(1) if σi 1, by virtue of which (4.5) may be approximated by

R
"
¯ "

#
iσ(Q

"!
®Q

""
e#iθ")O(σ#) (σU 0). (5.7)

The linear ramp problem has been solved by Booij (1983) and Porter & Staziker
(1995) through numerical integration of the mild-slope equation and modified mild-
slope equation, respectively, for κh

!,"
¯ 0±6}0±2, which imply kh¯ 0±861}0±463. The
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F 2. Mild-slope approximations to rRr plotted against κF. The crosses are from Booij’s solution
of the full problem, the solid line shows rR

ms
r, the dotted line shows the approximation (5.9) and the

broken lines show R
"
, R

#
and R

E
each calculated using (3.6) to approximate Q.

corresponding values of Q
"!

, Q
""

and θ
"
are 0±226, 0±503 and 0±698}σ, the substitution

of which into (5.7) yields

rRr¯ 0±275σ[1®0±748 cos (1±40}σ)]"/#O(σ#). (5.8)

The corresponding mild-slope approximation, for which Q
"

is given by Γ (3.6b), is

rRr¯ 0±223σ[1®0±482 cos (1±40}σ)]"/#O(σ#), (5.9)

in agreement with Miles & Zou (1993). These approximations, and others described in
§4, are compared with the results of Booij and Porter & Staziker in figures 2 and 3,
where the reflection coefficient is plotted against the dimensionless parameter κF.

For the purposes of comparison we have computed reflection coefficients from direct
integrations of the mild-slope and modified mild-slope equations. These are denoted
R

ms
and R

mms
respectively.

In figure 2 we consider the mild-slope approximation. The solid line shows values of
rR

ms
r, and the crosses correspond to Booij’s results for the full equations (read from

Booij’s paper using eye and ruler). The dotted line shows the approximation given by
equation (5.9), and it is clear that these results are reliable for κF(¯ 0±4}σ)" 1. There
are three broken lines shown, all appearing on the left of the graph near rRrE 0±4. These
curves show the approximations rR

"
r, rR

#
r and rR

E
r described in §4 and are nearly

indistinguishable. (Note that rR
E
r is not shown near sin θ

"
¯ 0, where we know the

approximation to be poor; this occurs near the three local minima of rR
ms

r.) As
indicated by the fact that R

#
ER

"
here, the iteration described in §4.1 converges to a

curve in agreement with the broken lines.
Figure 3 has the same format as figure 2, but the modified mild-slope (rather than

the mild-slope) equation has been used. The dotted line, corresponding to (5.8), is
clearly reliable for κF" 1, and the E-interpolation produces good approximations
everywhere except near sin θ

"
E 0, where it has not been implemented. The curves

corresponding to rR
"
r, rR

#
r, rR

E
r and rR

mms
r lie on top of one another. It is evident that

the modified mild-slope equation, which more consistently deals with terms involving
h« and h§, enables the quasi-geometrical optics approach to produce excellent
approximations.
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F 3. Modified mild-slope approximations to rRr plotted against κF. The crosses are from Booij’s
solution of the full problem, the solid line shows rR

mms
r, the dotted line shows the approximation (5±8).

For smaller values of κF, not shown on figure 3, rR
"
®R

mms
r achieves a maximum

value of almost 0±5, but rR
#
®R

mms
r is never greater than 0±0019. We note that, where

R
"

and R
#

differ significantly, R
E

is always a better approximation than R
"
, in fact

rR
E
®R

mms
r has a maximum value less than 0±15.

In both figures 2 and 3 R
#
and R

n
(n" 2) are indistinguishable to the eye, for which

reason we have not included R
v

(an approximation of the same order as R
#
). Values

of R
v

are given for another test problem considered in the next section.

6. Sinusoidal patch

As a second example, we consider the sequence of sinusoidal sandbars described by
(Davies & Heathershaw 1984 after shifting the origin of x and replacing their F by
α3 2nπ}F in the present notation)

h¯

1

2

3

4

h
!

(x% 0),

h
!
®b sinαx (0%x% F ),

h
!

(x& F ),

(6.1)

on the assumption that b}h
!
i 1. Substituting (6.1) into (3.15a), we obtain (cf. (5.2))

Q¯αb²(Q
"
}k)

!
[®δ(x)δ( F®x)](Q

"
}k)α sinαx´α#b#Q

#
(x) cos#αx, (6.2)

the substitution of which into (4.5), followed by the expansion of k and Q about
x¯ 0 and the invocation of dk}dh¯®2k#Q

"
(3.15b), yields

R
"
¯ 4k#

!
αbQ

"!
(4k#

!
®α#)−" eik!

F sink
!
FO(α#b#), (6.3)

in agreement with Davies & Heathershaw’s (25). The corresponding approximation to
the Bragg-resonant peak of rRr is

R
"m

¯ "

%
α#bF(αhsinhαh)−" [1O(α#b#)] (2k

!
¯α). (6.4)

Mei (1985) gives an asymptotic solution of the Bragg-reflection problem on the
assumption that r2k®αriα (in the present notation) and obtains (x¯ 0 in his (3.18))

R
Mei

¯²Ω= i(1®Ω= #)"/# coth [R
"m

(1®Ω= #)"/#]´−", (6.5a)
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F 4. Approximations to rRr for the sinusoidal bed test problem. (a) The solid line shows rR
mms

r ;
the dotted and dashed lines show rR

"
r, rR

Mei
r respectively. (b) The solid line shows rR

mms
r and the

dashed line shows rR
Mei

r. The approximations rR
#
r and rR

$
r are shown here as dotted and dash-dot

lines. The variational approximation R
v
is indicated by triangles.

where Ω= 3Ω}Ω
!
¯ (k®"

#
α) F}R

"m
(6.5b)

and R
"m

is given by (6.4). The corresponding approximation to the Bragg-resonant
peak at Ω= ¯ 0 is

rRr
max

¯ tanhR
"m

(k¯ "

#
α), (6.6)

which reduces to (6.4) for αbi 1 but, unlike (6.4), cannot exceed 1.
In figure 4(a, b) we show approximations to rRr for b¯ 0±16h

!
and n¯ 10. Here we

have used the modified mild-slope equation, since it is known that the mild-slope
equation performs poorly for this test problem (see, for example, Chamberlain &
Porter 1995). Figure 4(a) shows rR

mms
r as a solid line, rR

"
r as a dotted line and rR

Mei
r

as a broken line. Figure 4(b) magnifies the principal peak to facilitate comparison of
the approximations. The approximations rR

mms
r and rR

Mei
r appear as they did in figure

4(a), but now the dotted line shows rR
#
r, rR

$
r is shown as a dash-dot line, and rR

v
r is
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shown as triangles. Approximations rR
n
r with n& 4 are barely distinguishable (to the

eye) from rR
mms

r. Mei’s approximation, which (in consequence of the assumption
r2k®αriα) might have been expected to be accurate only for the principal peak, is
surprisingly accurate over at least the first three secondary peaks on either side of the
maximum.

Once again we see that the quasi-geometrical approximation performs exceptionally
well when rRr is small, the curve for R

"
being close to the solid curve. Only when rRr

is large do we require further approximations, and even in places where rRr" 0±7, we
see that very few iterations are required, R

$
being sufficient everywhere.

Note that, where reflection is large and R
#

differs significantly from R
$
, the

variational formulation gives a better approximation to R than does R
#
, even though

the two estimates are of the same order of accuracy when small.

7. Conclusions

It follows from the preceding results that R
"
, the quasi-geometrical approximation

to the reflection coefficient based on the modified mild-slope equation, is remarkably
accurate when reflection is weak. In parametric domains where reflection is stronger,
a means has been described to generate increasingly accurate approximations
(R

n
, n" 1).

Two further approximations have been discussed: R
E

(which is valid away from
sin θ

"
¯ 0) and R

v
(a variational approximation). In all of the computations that have

been carried out it has been found that R
E

(when valid) is superior to R
"
but inferior to

R
#
, whereas R

v
is better than R

#
but worse than R

$
. (That these comparisons are not

evident on any of figures 2, 3 and 4 is due to the fact that convergence of the sequence
(R

n
) is often so rapid that, as far as the eye can tell, R

"
¯R

E
¯R

#
¯R

v
.) The

approximations R
E

and R
v
are of practical use since R

E
is cheaper to calculate than R

#
and R

v
is cheaper to find than R

$
.
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Appendix. Quasi-geometrical-optics approximation: two-dimensional
topography

The extension of the quasi-geometrical-optics approximation of §3 for two-
dimensional topography begins with the solution of the eikonal equation (3.1b) for
θ¯ θ(x) and

k¯¡θ3k[µ, ν], µ#ν#¯ 1, (A 1a, b)

where µ and ν are the direction cosines of the vector k. Assuming that this solution has
been determined, we adopt the orthogonal coordinates θ and s through the
transformation

dθ¯k(µdxνdy), ds¯®νdxµdy, (A 2a, b)

for which the Jacobian is k, and replace (3.3a, b) by

L= ¯ "

%
ρ&&,= dθds, ,= ¯k−",. (A 3a, b)

Substituting (3.2) into (2.11) and proceeding as in §3, we obtain (after a non-trivial
reduction) ,= in the form (3.9) with

P¯N}H, Q¯ (Γλ)θ(Γ¡h)#(k#H )−" (Kk%©G#ª h«#), (A 4a, b)
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where K¯©F#
h
ª (¡h)#®¡[(©FF

h
®k#FGª¡h), (A 5a)

N¯ 2Γ©FGªk[λ#®(¡h)#]k[λθ©FGª®λ©FGªθ]λ#©2FG
h
®2F

h
GG#

z
ª,
(A 5b)

k¥θ ¯µ¥
x
ν¥

y
, λ¯µh

x
νh

y
, (A 6a, b)

and F, G and Γ are given by (2.9a, b) and (3.6b).
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